Friday 29 August 2008

Researchers Are Investigating Two New Potential Tools for Diagnosing Breast Cancer

Researchers at Jefferson Medical College of Thomas Jefferson University in Philadelphia are investigating contrast-enhanced subharmonic ultrasound as a noninvasive exam that could help physicians make a diagnosis. In subharmonic imaging, pulses are transmitted at one frequency, but only echoes at half that frequency are received

In a study reported in the September 2007 issue of Radiology, researchers tested their technique on 14 women ranging in age from 37 to 66 who had 16 biopsy-proven lesions. The researchers used a GE Logiq 9 ultrasound machine that was modified to perform grayscale subharmonic imaging, transmitting at 4.4 megahertz and receiving at 2.2 megahertz. The women underwent precontrast imaging and imaging using contrast

The researchers’ results using subharmonic imaging were better than conventional ultrasound and mammography. Of the 16 lesions, four were malignant. Mammography had 100% sensitivity and 20% specificity for these lesions. Subharmonic imaging had 75% sensitivity and 83% specificity for the same lesions.

The other tool -
Researchers at Duke University in North Carolina have developed a new scanner that they believe is better at finding early cancers in women than conventional mammography, and it can also be used for diagnosis and monitoring of therapeutic response(s). It is a hybrid between a SPECT and a CT scanner they are collectively calling mammotomography

The researchers have done imaging observer studies using phantoms to compare x-ray digital mammography with CT. “We have been able to show a significant statistical improvement using CT compared to mammography,” Tornai says. “In mammography, you lose a lot of information because you have only a 2D image. With the 3D image that the SPECT/CT scanner produces, lesions become more conspicuous because overlapping tissues are removed. In contrast to x-ray tomosynthesis, a pseudo-3D x-ray imaging modality, the SPECT/CT system produces a uniform 3D image and does not require any breast compression.”

The hybrid scanner that the researchers have built from novel configurations of conventional equipment circles the breast as the patient lies on a specially built table.

The scanner is also able to see areas, including the chest wall, that traditional mammograms may not. They have tested the hybrid scanner extensively with phantoms and has begun successfully scanning subjects with known cancer.

Because SPECT requires IV injection of imaging agents, the SPECT portion of the scanner would not likely be broadly used for routine screening mammography. However, if it proves to be more effective, the hybrid SPECT/CT system might be especially helpful for women who are at high risk for developing breast cancer because of familial history or a genetic predisposition.

Breast SPECT/CT also could be used for women with dense breasts or implants because mammography is known to miss up to 25% of cancers in these women, Tornai says. The scanner and associated imaging procedure also should be less costly to employ than MRI